Multicomponent model of deformation and detachment of a biofilm under fluid flow.

نویسندگان

  • Giordano Tierra
  • Juan P Pavissich
  • Robert Nerenberg
  • Zhiliang Xu
  • Mark S Alber
چکیده

A novel biofilm model is described which systemically couples bacteria, extracellular polymeric substances (EPS) and solvent phases in biofilm. This enables the study of contributions of rheology of individual phases to deformation of biofilm in response to fluid flow as well as interactions between different phases. The model, which is based on first and second laws of thermodynamics, is derived using an energetic variational approach and phase-field method. Phase-field coupling is used to model structural changes of a biofilm. A newly developed unconditionally energy-stable numerical splitting scheme is implemented for computing the numerical solution of the model efficiently. Model simulations predict biofilm cohesive failure for the flow velocity between [Formula: see text] and [Formula: see text] m s(-1) which is consistent with experiments. Simulations predict biofilm deformation resulting in the formation of streamers for EPS exhibiting a viscous-dominated mechanical response and the viscosity of EPS being less than [Formula: see text]. Higher EPS viscosity provides biofilm with greater resistance to deformation and to removal by the flow. Moreover, simulations show that higher EPS elasticity yields the formation of streamers with complex geometries that are more prone to detachment. These model predictions are shown to be in qualitative agreement with experimental observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction.

Bacterial biofilms, while made up of microbial-scale objects, also function as meso- and macroscale materials. In particular, macro-scale material properties determine how biofilms respond to large-scale mechanical stresses, e.g. fluid shear. Viscoelastic and other constitutive properties influence biomass structure (through growth and fluid shear stresses) by erosion and sloughing detachment. ...

متن کامل

Dynamic Behavior of an Oil Droplet Adhered to the Wall Surface in a Channel Flow by the Lattice Boltzmann Method

The Lattice Boltzmann Method is used to simulate the dynamics of droplet deformation in a channel flow under various conditions. The droplet behavior has been investigated under transient conditions. For cases where the droplet remains attached to the surface, the shape deformation of the droplet during crawling is captured. It has been shown that there is a limiting value for the droplet volum...

متن کامل

Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms.

Biofilms in drinking water distribution systems (DWDS) could exacerbate the persistence and associated risks of pathogenic Legionella pneumophila (L. pneumophila), thus raising human health concerns. However, mechanisms controlling adhesion and subsequent detachment of L. pneumophila associated with biofilms remain unclear. We determined the connection between L. pneumophila adhesion and subseq...

متن کامل

Viscoelastic fluid description of bacterial biofilm material properties.

A mathematical model describing the constitutive properties of biofilms is required for predicting biofilm deformation, failure, and detachment in response to mechanical forces. Laboratory observations indicate that biofilms are viscoelastic materials. Likewise, current knowledge of biofilm internal structure suggests modeling biofilms as associated polymer viscoelastic systems. Supporting expe...

متن کامل

A 2D channel-clogging biofilm model.

We present a model of biofilm growth in a long channel where the biomass is assumed to have the rheology of a viscous polymer solution. We examine the competition between growth and erosion-like surface detachment due to the flow. A particular focus of our investigation is the effect of the biofilm growth on the fluid flow in the pores, and the issue of whether biomass can grow sufficiently to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 12 106  شماره 

صفحات  -

تاریخ انتشار 2015